以小麦品种藁城8901为母本,糯麦1号为父本,用“单粒传”法构建了一个含有8种Wx基因突变类型的重组自交系群体(RIL)。应用改良的SDS-PAGE方法对RIL-7的Wx基因突变类型进行检测,发现在228个株系中,正常类型的株系有34个,Wx-A1突变体为26个,Wx-B1突变体为32个,Wx-D1突变体30个,Wx-A1和Wx-B1位点同时突变的有28个,Wx-A1和Wx-D1位点同时突变的有20个,Wx-B1和Wx-D1位点同时突变的为28个,3个Wx基因位点均突变的为16个。卡方测验证明,3个Wx基因位点的突变符合孟德尔遗传规律,属于质量性状遗传。田间试验表明,8种类型之间在初花期、株高和穗粒数上无显著差异,但在穗长、每穗小穗数和千粒重上Wx-A1突变型显著低于其他7种类型,而7种类型间无显著差异。淀粉特性研究表明,不同Wx蛋白缺失显著影响直链淀粉含量、淀粉糊化特性和淀粉凝胶的质构剖面分析(TPA)特性。正常类型的直链淀粉含量最高(20.8%),糯麦的最低(1.1%)。糯麦淀粉的峰值黏度和稀澥值较高,但其低谷黏度、最终黏度和反弹值较低,与其他缺失类型间差异达5%显著水平。凝胶的TPA测试表明,随着直链淀粉含量的降低,凝胶的硬度、黏着性、弹性、胶着性和咀嚼性显著降低,而黏聚性和回复性显著升高。直链淀粉含量与糊化特性的低谷黏度、最终黏度、反弹值、峰值时间和糊化温度之间正相关达1%显著水平(r=0.892-0.965),与峰值黏度、稀澥值呈1%水平负相关(r=-0.892,r=-0.945);直链淀粉含量与凝胶TPA参数的黏聚性、回复性呈极显著负相关(r=-0.928,r=-0.829),与凝胶的硬度、黏着性、弹性、胶着性和咀嚼性呈极显著正相关(r=0.869-0.979)。
The mutation at Wx-A1, Wx-B1, and Wx-D1 alleles may cause lack of Wx-A1, Wx-B1, and Wx-D1 proteins, and influence obviously the wheat quality. We use a normal cultivar Gaocheng 8901 (carrying three Wx genes) and Waxy Wheat 1 (null at the three Wx alleles) to develop a population of recombinant inbred lines (RILs) through single-seed descent method. A total of 228 RIL (F7) lines was obtained to study the agronomic traits and starch characteristics responsing to Wx allele mutation, among which 34 of wild types, 26 of Wx-A1 null, 32 of Wx-B1 null, 30 of Wx-D1 null, 28 of Wx-A1 and Wx-B1 null, 20 of Wx-A1 and Wx-D1 null, 28 of Wx-B1 and Wx-D1 null, and 16 of waxy lines with the three null alleles were examined by improved sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The null allele at each Wx locus fits Mendelian segregation by chi-square test. Field experiments did not show significant differences (P〉0.05) in the traits of initial blooming stage, plant height, and grain number per ear among the eight types, but the Wx-A1 null type was significantly lower ( P〈0.05) than other seven types in the traits of spike length, spikelet number per ear, and 1000-grain weight, while there were no significant differences among the seven types. The amylose content, starch pasting characteristics, and TPA characteristics of starch gels were all influenced significantly by different Wx protein deficiencies. The highest amylose content appeared in the wild type (20.8%), and the lowest in the waxy type (1.1% ). The starch in waxy wheat has higher peak viscosity and breakdown, lower trough viscosity, final viscosity, and setback as compared with other types (P 〈 0.05). With the decrease of amylose content, the hardness, adhesiveness, springiness, gumminess and chewiness of starch gels decreased, while cohesiveness, and resilience increased significantly in the eight types. The amylose content was positively correlated with trough viscosity, final viscosity, setback, peak time, an