以19份小麦亲缘种及普通小麦中罔春为材料,测定比较了籽粒的Fe、Zn、Cu、Mn含量,并进行了聚类分析。结果表明,Fe、Zn、Cu、Mn含世平均值分别为50.94、34.89、6.96和33.21μgg^-1其改良潜力分别为121.94%、40.46%、41.17%和73.03%。根据Fe、Zn、Cu、Mn含苗将供试材料均分为高、中、低3类,其中塔城高拉山小麦Fe含量高达124.32μg^-1,为富Fe材料。富Zn材料有野生一粒小麦、野生二粒小麦等6个品种(系),均值为49.91μgg^-1。富Cu材料有分枝小麦和小黑麦(8x),均值为8.66μgg^-1。富Mn材料为斯卑尔脱小麦,含量高达63.85μgg^-1。小同倍性染色体倍性材料间,Fe、Ze和Mn含量均以四倍体小麦最高,Cu含量以八倍体小麦最高。不同染色体组间,AABB染色体组材料的Fe、Ze和Mn含量最高,其次是AA染色体组材料,Cu以AABBDDRR染色体组最高。这些结果可为小麦营养品质育种的亲本选择和有利基因的发掘和利用提供参考依据。
The mineral nutrition is an important aspect of wheat ( Triticum aestivum L. ) grain quality, and becomes one of the most important targets for breeding. The main kindred germplasm of common wheat, which carry many fine genes, act as important donors in the evolution and breeding of common wheat. To screen breeding materials from these kindred germplasm with high or low mineral element content, we assessed the content level of four essential elements (iron, zinc, copper, and manganese) in grain of 19 main kindred germplasm of common wheat including T. boeoticum, T. monococcum, Ae. tauschii, Secale, Secale vaviloviim, T. dicoccodes, T. dicoccum, T. polonicum, T. carthlicum, T. turarticum, Ae. triuncialis, T. spelta, T. cornpacturn, T. sphaeroccum, T. aestivurn concv, rarnulostachye, T. aestivum subsp, tibetanum, T. aestivum subsp, yunttanese, Triticale (6 x ), Triticale (8 x ), Chinese Spring. in 2005-2006. The common wheat cultivar Chinese Spring was employed as control. After dry digestion, Fe, Zn, Cu, and Mn were determined by flame atomic accessory spectrometry (FAAS) . The results showed that the mean content and the improving potential of all materials were 50.94μg g^- 1 and 121.94% for Fe, 34.89 μg g^- 1 and 40.46% for Zn, 6.96μg g^- 1 I g and 41.17% for Cu, 33.21 μg g^- 1 and 73.03% for Mn, respectively. Based on the contents of Fe, Zn, Cu, and Mn, all materials were classified into three groups by using clustered analysis. T. turanicum was classified as Fe rich material with the highest content of 124.32 μg g^- 1 T. boeoticum, T. monococcum, and other four samples were classified as Zn rich materials, whose Zn content on average was 49.91 μg g^- 1 T. aestivum concv. Ramulostachye, and Triticale (8 x ) were classified as Cu rich materials, whose Cu content on average was 8.66 μg g^- 1. T. spelta was classified as Mn rich materia]s, with the highest content of 63.85 μg g^- 1. The tetraploid materials had the highest mean contents of Fe, Zn, and Mn, and the Octoploid materials