设X,Y是Banach空间,T是D(T)CX到Y的稠定闭线性算子而且它的值域在Y闭.设相容算子方程Tx=b的非相容扰动为||(T+δT)x-b^-|=minz∈D(T)||(t+δT)z-b^-||,这里δT是X→Y的有界线性算子.在某些条件下(比如X,Y是自反的),设上述方程的最小范数解为面x^-m,并设Tx=b的解集S(T,b)中的最小范数解为xm.本文给出了当δ(Ker T,Ker(T+δT))较小时,dist(x^-m,S(T,b))/||xm||的上界估计式.
Let X, Y be Banach spaces and let T be a densely-defined closed linear operator from D(T) C to Y with closed range. Suppose the non-consistent perturbation of the consistent equation Tx = b is ||(T+δT)x-b^-|=minz∈D(T)||(t+δT)z-b^-||, where δT is a bounded linear operator from X to Y. Under certain conditions (e. g. X and Y are reflexive Banach spaces), let x^-m be the minimal norm solution of above equation and let Xm be minimal norm solution of the set S(T, b) ={x ∈ D(T)| Tx = b}. In this paper, wegive an estimation of the upper bound of dist(x^-m,S(T,b))/||xm|| when δ(Ker T, Ker (T + δT)) is small enough.