利用Ag/SnO2复合材料界面高分辨透射电镜分析结果,运用第一性原理对复合材料界面结合进行模拟计算。结果表明,反应合成后Ag6O2(101)面与SnO2(10)面存在晶格匹配,结合能、布居分布和态密度均表明这两个自由表面相结合与实验现象吻合,电子差分密度进一步证实未分解的Ag6O2向Sn提供富氧环境,利于纳米SnO2颗粒生成,最后分析界面表层原子的弛豫状态
Ag6O2/SnO2 interface bonding of Ag/SnO2 composites was simulated by HRTEM image analysis and first-principles calculations. Results show that there is lattice match between the interfaces of SnO2(10) and Ag6O2(101). According to cohesive energy, population and density of state (DOS), it is found the bonding of the two free interfaces is in good agreement with the experiment results. Furthermore, the electron density difference verifies the undecomposed Ag6O2 provided an oxygen-rich environment for Sn, which is favorable for SnO2 particle formation. At last the relaxation state of surface atoms in the interface was analyzed