纸把欧几里德几何学的乔丹代数学用作一个基本工具扩大变光滑的功能,它包括弄平功能的 Chen-Mangasarian 班和 Fischer-Burmeister,到对称的锥补充问题。为这些功能和 theirJacobians 的可计算出来的公式被导出。另外,这些函数是关于参数μ并且连续地连续的 Lipschitz,这被显示出在为任何μ的 J x J 上可辨 > 0。
The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter # and continuously differentiable on J × J for any μ 〉 0.