从生物质原料的工业分析结果和木质素含量两个角度出发,分析了二者对生物质炭化的影响.对生物质炭化原料进行选择,认为木材类生物质适合作为生物质炭化的原料,可加强对树木枝条、锯末及薪炭林的炭化;为实现生物质炭化的工业化,还应设计利用烟气余热等热源来热解生物质的换热器,这项设计需知道生物质热解需热量.运用热重-差示扫描(TG—DSC)同步热分析仪对选用的木屑进行热解实验并利用DSC曲线对木屑炭化需热量进行分析.结果表明,木屑炭化终温为500℃时(初始温度为40℃),需热量为491kJ/kg.提出DSC曲线在工业用热解换热器传热设计和校核中的应用方法.
Biomass materials for producing char had been selected after analyzing the in- fluences of the two aspects on biomass carbonization. The two aspects are respectively the results of proximate analysis and lignin content of biomass materials. Forest biomass is suitable for biomass carbonization. The use of forest branches, sawdust and fuel forest for carbonization should been strengthened. In order to realize industrialization of biomass carbonization, heat exchanges for biomass pyrolysis utilizing residual heat of the flue should been designed. It needs to know the caloric requirement of pyrolysis. TG-DSC simultaneous thermal analyzer was used for experiments of sawdust. The analysis of caloric requirement of biomass carbonization was made. When the carbonization temperature was 500 ℃ (the initial temperature was 40 ℃), caloric requirement was 491 kJ/kg. This paper also pointed out a DSC curvets application method in heat transfer design and verification of heat exchange for biomass pyrolysis.