位置:成果数据库 > 期刊 > 期刊详情页
平方根容积卡尔曼滤波在移动机器人SLAM中的应用
  • ISSN号:1002-0446
  • 期刊名称:《机器人》
  • 时间:0
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京交通大学,北京100044
  • 相关基金:国家自然科学基金资助项目(61134001,60909055);国家973计划资助项目(2012CB215202);国家863计划资助项目(SS2012AA052302);中央高校基本科研业务费专项资金资助项目(2012JBM017,2011YJS287).
中文摘要:

针对机器人同时定位与地图构建(SLAM)问题,提出基于平方根容积卡尔曼滤波的SLAM算法.该算法主要特点是使用平方根容积卡尔曼滤波计算SLAM后验概率密度,以减小线性化误差,达到提高SLAM定位精度的目的.提出的算法通过传递平方根因子代替系统协方差矩阵,因而在计算中避免了耗费时间的Cholesky分解,提高了算法效率.实验部分使用扩展型卡尔曼滤波SLAM(EKF-SLAM)、无迹卡尔曼滤波SLAM(UKF-SLAM)和所提出的算法进行了对比.实验结果表明:较之EKF-SLAM,容积卡尔曼滤波的精度提高了1倍;相比UKF-SLAM,SCKF-SLAM节省1/4计算资源.

英文摘要:

For simultaneous localization and mapping (SLAM) of robots, a new solution is proposed, named square-root cubature Kalman filter based SLAM algorithm (SCKF-SLAM). The main contribution of the proposed algorithm is that the SLAM posterior probability density is calculated by using the square root cubature Kalman filter in order to reduce lineariza- tion error and improve SLAM accuracy. Instead of covariance matrixes, square-root factors are used in the proposed SLAM algorithm to avoid the time-consuming Cholesky decompositions and improve the calculation efficiency. In experiments, the proposed algorithm is compared with extended Kalman filter SLAM (EKF-SLAM) and unscented Kalman filter SLAM (UKF-SLAM). The results show that compared with EKF-SLAM, precision of SCKF-SLAM is doubled, and compared with UKF-SLAM, SCKF-SLAM saves a quarter of computation resources.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机器人》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王越超
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:jqr@sia.ac.cn
  • 电话:024-23970050
  • 国际标准刊号:ISSN:1002-0446
  • 国内统一刊号:ISSN:21-1137/TP
  • 邮发代号:
  • 获奖情况:
  • 中文核心期刊(2000年)
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11997