位置:成果数据库 > 期刊 > 期刊详情页
自适应CKF强跟踪滤波器及其应用
  • ISSN号:1007-449X
  • 期刊名称:《电机与控制学报》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西南交通大学电气工程学院,四川成都610031, [2]西南交通大学交通运输与物流学院,四川成都610031
  • 相关基金:国家自然科学基金(51177137);国家自然科学基金重点项目(61134001)
中文摘要:

针对强跟踪滤波器(STF)的理论局限以及基于UT变换的强跟踪滤波器(UTSTF)处理高维非线性系统时滤波精确度下降甚至发散等问题,提出一种基于容积卡尔曼滤波(CKF)算法的强跟踪滤波器(CKFSTF)。CKFSTF兼具了STF和CKF的优点:鲁棒性强,滤波精度高,数值稳定性好,计算速度快,容易实现且应用范围广。此外,对于目标跟踪系统过程噪声统计特性未知的情况,在CKFSTF的基础上应用Sage-Husa噪声估值器对噪声统计特性进行在线估计,形成自适应CKFSTF。仿真结果验证了新算法的有效性。

英文摘要:

For the problem that Strong tracking filter( STF) has some theoretical limitations and the STF based on unscented transformation( UTSTF) declines in accuracy and further diverges when solving the nonlinear filtering problem in high dimension,a cubature Kalman filter( CKF) with strong tracking behavior( CKFSTF) was proposed. CKFSTF combines advantages of STF and CKF: strong robustness,high accuracy,strong numerical stability,fast calculation speed,easy implementation and wide range of applications. Furthermore,adaptive CKFSTF was proposed when the prior noise statistic is unknown and time-varying,which using Sage-Husa noise statistic estimator based on CKFSTF. Validity of the new proposed algorithm was verified by the simulation examples.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电机与控制学报》
  • 中国科技核心期刊
  • 主管单位:黑龙江教育厅
  • 主办单位:哈尔滨理工大学
  • 主编:戈宝军
  • 地址:哈尔滨市南岗区学府路52号
  • 邮编:150080
  • 邮箱:djkz-emc@188.com
  • 电话:0451-86396392
  • 国际标准刊号:ISSN:1007-449X
  • 国内统一刊号:ISSN:23-1408/TM
  • 邮发代号:14-46
  • 获奖情况:
  • 中文核心期刊,中国科技论文统计源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10904