位置:成果数据库 > 期刊 > 期刊详情页
An investigation on electrochemical performances of as-cast and annealed La0.8Mg0.2Ni3.3Co0.2Six(x = 0-0.2) alloy electrodes for Ni/MH battery application
  • ISSN号:1003-6326
  • 期刊名称:《中国有色金属学报:英文版》
  • 时间:0
  • 分类:TG139.7[金属学及工艺—合金;一般工业技术—材料科学与工程;金属学及工艺—金属学] TG455[金属学及工艺—焊接]
  • 作者机构:[1]KeyLaboratoryofIntegratedExploitationofBaiyunOboMulti-MetalResources,InnerMongoliaUniversityofScienceandTechnology,Baotou014010,China, [2]DepartmentofFunctionalMaterialResearch,CentralIronandSteelResearchInstitute,Beijing100081,China
  • 相关基金:Projects(51371094, 51161015) supported by the National Natural Science Foundations of China; Project(2011ZD10) supported by Natural Science Foundation of Inner Mongolia, China
中文摘要:

The La–Mg–Ni-based A2B7-type La0.8Mg0.2Ni3.3Co0.2Six(x=0-0.2)electrode alloys were prepared by casting and annealing.The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically.Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure,involving two main phases(La,Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3.The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of(La,Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure.The phase abundances decrease from 74.3%(x=0)to 57.8%(x=0.2)for the(La,Mg)2Ni7 phase,and those of LaNi5 phase increase from 20.2%(x=0)to 37.3%(x=0.2).As for the electrochemical measurements,adding Si and performing annealing treatment have engendered obvious impacts.The cycle stability of the alloys is improved dramatically,being enhanced from 80.3% to 93.7% for the as-annealed(950 °C)alloys with Si content increasing from 0 to 0.2.However,the discharge capacity is reduced by adding Si,from 399.4 to 345.3 mA·h/g as the Si content increases from 0 to 0.2.Furthermore,such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease.Also,it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.

英文摘要:

The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x~0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国有色金属学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国有色金属学会
  • 主编:黄伯云
  • 地址:中国长沙中南大学
  • 邮编:410083
  • 邮箱:f-xsxb@csu.edu.cn
  • 电话:0731-88830949
  • 国际标准刊号:ISSN:1003-6326
  • 国内统一刊号:ISSN:43-1239/TG
  • 邮发代号:42-317
  • 获奖情况:
  • 国家“双百”期刊,第二届全国优秀科技期刊评比二等奖,中国有色金属工业总公司优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:1159