Nanocrystalline 和非结晶的 Mg <潜水艇class=“ a-plus-plus ”> 2 Ni类型( Mg <潜水艇class=“ a-plus-plus ”> 24 Ni <潜水艇class=“ a-plus-plus ”> 10 Cu <潜水艇class=“ a-plus-plus ”> 2 ) 100x Nd <潜水艇class=“ a-plus-plus ”> x ( x ?=? 0 , 5 , 10 , 15 , 20 )合金被融化旋转技术准备。当演员组和旋转合金的结构被 X 光检查衍射描述,扫描电子显微镜学和传播电子显微镜学。合金电极的电气化学的性能用一个自动 galvanostatic 系统被测量。电气化学的阻抗系列和合金电极的 Tafel polarisation 曲线用一个电气化学的工作车站被阴谋。氢散开系数用潜在的步方法被计算。结果显示所有当演员组合金与 Mg 介绍多相的结构<潜水艇class=“ a-plus-plus ”> 2 是的 Ni 类型有 Mg 的主要阶段<潜水艇class=“ a-plus-plus ”> 6 Ni , Nd <潜水艇class=“ a-plus-plus ”> 5 Mg <潜水艇class=“ a-plus-plus ”>是的 41 和 NdNi 第二等的阶段。第二等的阶段与增加的 Nd 内容增加了。同样旋转的 Nd 免费的合金展出了 nanocrystalline 结构,而同样旋转的做 Nd 的合金展出了 nanocrystalline 和非结晶的结构。这些结果建议那增加的 Nd 便于 Mg 的玻璃形成 < 潜水艇 class= “ a-plus-plus ” > 2 Ni 类型合金。融化旋转并且 Nd 增加改进了合金电气化学的性能,它包括分泌物潜力特征,分泌物能力,电气化学的周期稳定性和高率的分泌物能力。
Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability.