利用经验模态分解算法分解大坝变形数据,得到不同物理特征尺度的变形分量,分析各变形分量特征及其相关影响因素。针对各变形分量的特点,分别建立基于GA-SVM的各变形分量预测模型,将各分量预测模型相加,最终构建基于经验模态分解和支持向量机的多尺度变形预测模型。由大坝变形数据的经验模态分解实例分析,证实经验模态分解算法能有效对大坝变形数据进行多尺度分解,由经验模态分解算法分解得到的各变形分量其物理特征更加显著,更易于各变形分量影响因素分析和变形模型建立,因此,针对各变形分量的特点所建立的GA-SVM的各变形分量模型具有较高精度。基于经验模态分解和支持向量机的多尺度变形预测模型由各分量预测模型相加而得,能充分挖掘大坝变形中隐含的多种内在规律,能同时在不同特征尺度上进行大坝变形预测。通过对多尺度大坝变形预测模型和多元回归、时间序列分析、GM(1,4)、BP网络和GA-SVM大坝变形预测模型进行精度对比,证实基于经验模态分解和支持向量机的多尺度变形预测模型是一种精度较高的大坝变形预测新方法。
利用经验模态分解算法分解大坝变形数据,得到不同物理特征尺度的变形分量,分析各变形分量特征及其相关影响因素。针对各变形分量的特点,分别建立基于GA-SVM的各变形分量预测模型,将各分量预测模型相加,最终构建基于经验模态分解和支持向量机的多尺度变形预测模型。由大坝变形数据的经验模态分解实例分析,证实经验模态分解算法能有效对大坝变形数据进行多尺度分解,由经验模态分解算法分解得到的各变形分量其物理特征更加显著,更易于各变形分量影响因素分析和变形模型建立,因此,针对各变形分量的特点所建立的GA-SVM的各变形分量模型具有较高精度。基于经验模态分解和支持向量机的多尺度变形预测模型由各分量预测模型相加而得,能充分挖掘大坝变形中隐含的多种内在规律,能同时在不同特征尺度上进行大坝变形预测。通过对多尺度大坝变形预测模型和多元回归、时间序列分析、GM(1,4)、BP网络和GA-SVM大坝变形预测模型进行精度对比,证实基于经验模态分解和支持向量机的多尺度变形预测模型是一种精度较高的大坝变形预测新方法。