以氢氧化锂、磷酸二氢铵和醋酸镍为原料,以聚乙二醇PEG-400为表面活性剂,采用前驱体固相活化法制备LiNiPO4纳米晶材料.固相制备过程的活化能E=81.08kJ·mol^-1,过程动力学为二维相界面扩散反应机理.前驱体生成LiNiPO4的反应符合界面反应指数成核机理,活化能E1=11.82kJ·mol^-1,指前因子InA=13.82;LiNiPO4晶体生长过程具有较小的活化能E2=17.73kJ·mol^-1;Li3PO4转化反应和反应体系物系晶化过程符合二维相界面扩散反应机理,其是制备过程可控制的重要步骤.材料复合电极LiNiPO4+Nafion/C在0.5mol·L^-1H2SO4中具有典型的电容性能,电极比电容为214F·g^-1,经1000次循环,电极电容量不但没有衰减反而略有增加,是潜在的电容器材料.
The nano-erystallite LiNiPO4 powder was synthesized via solid-state reaction of the precursor NH4NiPO4 using raw materials LiOH, NH3H2PO4 and NiAc2 · 4H2O by adding surfactant PEG-400. The results showed that the process kinetics mechanism of LiNiPO4 crystals was two-dimensional interface diffusion and the reaction activation energy E was 81.08 kJ · mol^-1. The formation of amorphous LiNiPO4 from the precursor consists with the interracial reaction mechanism of the index nucleation which the activation energy E1 was 11.82 kJ · mol^-1 and logarithm of exponential factor in A was 13. 82. The process of crystal LiNiPO4 growth had smaller activation energy E2 of 17.73 kJ · mol^-1. The key controllable steps in whole prepared processes are the conversion reaction and crystallization of LiNiPO4. LiNiPO4 +Nafion/ C composite electrode in sulfuric acid solution (0.5 mol · L^-1 ) has typical capacitance properties and the specific discharge capacity was 214 F · g^- 1 After 1 000 times discharge and charge cycling, the electrode discharge capacity increased slightly instead of attenuation. Results show that the LiNiPO4 +Nafion/C composite could be applied as the potential material for capacitor.