对给定的英语音素、单词和语句进行了采集并完成预处理.分别应用互信息法和Cao氏法确定了实际采集的语音信号序列的延迟时间和嵌入维数,以完成语音序列的相空间重构.通过计算实际采集的语音信号序列的最大Lyapunov指数,完成了语音信号的混沌特性识别,判定其具有混沌特性.引入Volterra级数,提出了一种具有显式结构的语音信号非线性预测模型.为克服最小均方误差算法在Volterra模型系数更新时固有的缺点,在最小二乘法基础上,应用基于后验误差假设的可变收敛因子技术,构建了一种基于Davidon-Fletcher-Powell算法的二阶Volterra模型(DFPSOVF),并将其应用于具有混沌特性的语音信号序列预测.仿真结果表明:DFPSOVF非线性预测模型对于单帧和多帧语音信号均具有更好的预测精度,优于线性预测模型,并且能够很好地反映语音序列变化的趋势和规律,完全可以满足语音预测的要求;可以根据语音信号序列的嵌入维数选取预测模型的记忆长度.所提出模型可以为语音信号重构和压缩编码开辟一条新途径,以改善语音信号处理方法的复杂度和处理效果.
The given English phonemes,words and sentences are sampled and preprocessed.For these real measured speech signal series,time delay and embedding dimension are determined by using mutual information method and Cao's method,respectively,so as to perform phase space reconstruction of the speech signal series.By using small data set method,the largest Lyapunov exponent of the speech signal series is calculated and the fact that its value is greater than zero presents chaotic characteristics of the speech signal series.This,in fact,performs the chaotic characteristic identification of the speech signal series.By introducing second-order Volterra series,in this paper we put forward a type of nonlinear prediction model with an explicit structure.To overcome some intrinsic shortcomings caused by improper parameter selection when using the least mean square(LMS) algorithm to update Volterra model efficiency,by using a variable convergence factor technology based on a posteriori error assumption on the basis of LMS algorithm,a novel Davidon-Fletcher-Powell-based second of Volterra filter(DFPSOVF) is constructed and is performed to predict speech signal series of the given English phonemes,words and sentences with chaotic characteristics.Simulation results under MATLAB 7.0 environment show that the proposed nonlinear model DFPSOVF can guarantee its stability and convergence and there are no divergence problems in using LMS algorithm;for single-frame and multi-frame of the measured speech signals,when root mean square error(RMSE) is used as an evaluation criterion the prediction accuracy of the proposed nonlinear prediction model DFPSOVF in this paper is better than that of the linear prediction(LP) that is traditionally employed.The primary results of single-frame and multi-frame predictions are given.So,the proposed DFPSOVF model can substitute linear prediction model on certain conditions.Meanwhile,it can better reflect trends and regularity of the speech signal series and fully meet requirements for sp