位置:成果数据库 > 期刊 > 期刊详情页
应用于遥感图像分割的原型提取谱聚类集成算法
  • ISSN号:1671-8860
  • 期刊名称:武汉大学学报(信息科学版)
  • 时间:2012.12.5
  • 页码:1472-1476
  • 分类:P237.4[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:[1]西安邮电学院通信与信息工程学院,西安市长安南路563号710061, [2]陕西师范大学计算机科学学院,西安市长安南路199号710062, [3]西安邮电学院计算机学院,西安市长安南路563号710061
  • 相关基金:国家自然科学基金资助项目(61102095,61105064); 陕西省教育厅科研计划资助项目(11JK1008,2010JK835,2010JK837); 智能感知与图像理解教育部重点实验室开放基金资助项目(IPIU012011008)
  • 相关项目:基于鲁棒相似性测度的含噪图像分割的谱聚类方法
中文摘要:

针对遥感图像数据量大、类别归属复杂的特点,提出了一种用于遥感图像分割的原型提取谱聚类算法。该算法首先采用广义模糊c-均值聚类算法对遥感图像进行过分割,将得到的聚类中心作为每个分割区域的代表点;然后,通过构造代表点之间的相似性矩阵,利用谱图划分方法对代表点进行聚类;最后,根据代表点的聚类结果对图像像素点进行重新归类来获得遥感图像的最终分割结果。此算法涉及到3个参数,为了克服算法对于参数的敏感性和内在的随机性,进一步引入集成策略,给出了原型提取谱聚类的集成算法。

英文摘要:

Aiming at the huge data amount and pixel complex ownership of remote sensing images,a prototypes-extraction spectral clustering algorithm for remote sensing image segmentation was proposed.Firstly,the generalized fuzzy c-means algorithm was adopted to perform an over-segmentation of the image,and the obtained clustering prototypes were regarded as the representative points of segmentation regions to reduce the data amount of original image.Secondly,the similarity matrix between the representative points was constructed,and then the spectral graph partitioning method was utilized to cluster the representative points.Eventually,based on the clustering result of representative points,the image pixels were reclassified to obtain the final image segmentation results.There are three parameters in the prototypes-extraction spectral clustering algorithm.In order to overcome the parameter sensitivity and inherent randomness of this method,an ensemble strategy was further introduced into the method and its ensemble algorithm is presented.The segmentation experiments on artificial texture and remote sensing images show that this proposed ensemble method behaves well in segmentation performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217