通过在纤芯附近引入两个直径较大的空气孔诱导纤芯局部双折射,在包层减小x方向的孔间隔诱导包层双折射,设计实现了一种高双折射随波长可调效应的微结构光纤.采用全矢量平面波方法,以聚合物甲基丙烯酸甲酯为基材,对其偏振特性和基模模场进行了研究.结果发现,该光纤基模双折射在光通信波段呈现两个最大值,且最大双折射大小和位置随光纤结构和波长的变化可以进行调节.通过调节光纤结构参数,模拟得到了该光纤具有高双折射和零偏振模色散的最佳设计参数.
A new type of microstructured optical fiber with a high birefringence tunable effect is designed by introducing two large air holes in a core region to induce local birefringence and reducing the hole lattices in the x-direction to induce global birefringence. Polarization properties and modal field characteristics of this fiber based on polymethyl methacrylate materials are investigated by using the full vectorial plane wave method. The results show that the fundamental mode birefringence has two maxima in an optical communication wavelength band, and the magnitude and position of the maximum birefringence can be adjusted by changing the wavelength and the structure parameter of this fiber. By adjusting the air holes diameter and hole lattices in the x-direction , the simulation results show the optimized design parameters of this fiber with high birefringence and zero polarization mode dispersion.