位置:成果数据库 > 期刊 > 期刊详情页
基于语义相似度的SCORM学习资源整合
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]湖南大学软件学院,长沙410082, [2]湖南商学院,长沙410205
  • 相关基金:国家自然科学基金(60473031)资助
中文摘要:

基于支持向量机理论的分类算法,由于其完善的理论基础和良好的试验结果,目前已逐渐引起国内外研究者的关注。文中采用支持向量机技术,对436个病例的14个特征建立了Ⅱ型糖尿病的“预测性”分类模型,进行全面的数据挖掘和分析,探寻与Ⅱ型糖尿病判别相关联的重要病例特征。同时,还采用决策树、多层感知器方法进行了试验,结果表明支持向量机的效果最好。当输入向量为腰围、腰围/臀围、舒张血压、年龄时,敏感度、特异性、准确率最高,分别为0.8666、0.6420、0.7014.结论表明,支持向量机对Ⅱ型糖尿病特征筛选、分类识别是一种有效的方法,为Ⅱ型糖尿病强相关病例特征鉴别探索了一条有效途径。

英文摘要:

Support Vector Machine ( SVM), a kind of machine learning method, can efficiently solve the classification problem. It is based on structure risk minimum principal, attracting more and more people. A classification,prediction model by using SVM for data mining, is developed ed It could identify type Ⅱ diabetes and select the best subset from the 14 features for classification in a dataset of 436 cases/controls. It turns out that the best sensitivity, specificity and accuracy are 0. 866 6, 0. 6420 and 0. 701 4 respectively, with the subset consisting of waistline, waistline/hip-girth, diastolic blood pressure and age. In addition, the performance of SVM was superior to two other modem techniques, Decision Tree and Multilayer Perceptron is found. It suggests that SVM should be an efficient method to identify type Ⅱ diabetes and select the best subset from some relevant features for the identification.

同期刊论文项目
期刊论文 69 会议论文 9
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887