为了稳定半导体激光器激射光束在光纤传输过程的耦合效率,提出一种沟槽结构的半导体激光器,并对该结构激光器的光束、耦合效率及P-I特性进行研究。在普通条形半导体激光器的脊形区刻蚀了周期性的沟槽结构,来改善半导体激光器有源区的增益分布。通过对比普通结构与沟槽结构半导体激光器的光束分析,测试其耦合效率以及P-I特性。结果表明:沟槽结构的半导体激光器能够使光腔内模式更加稳定,输出光束更加集中,并避免了"Kink"效应的发生;与此同时,耦合效率提高至97.7%,并且较普通结构激光器更为稳定。沟槽结构半导体激光器有效地解决了光斑跳动问题,稳定了激光器的耦和效率。
In order to stabilize the coupling efficiency of the laser beam from the semiconductor laser through optical fiber, a laser with groove structure was proposed, and the laser beam, coupling effi- ciency and P-I characteristics were researched. The periodic grooves in the ridge region of the laser were etched to improve the gain distribution in the active region of the laser. The laser beams of the common laser and the groove structure laser were analyzed, the coupling efficiency and P-I charac- teristics were tested. The results show that the strip laser with groove structure can stabilize the cavi- ty mode, avoid the "Kink" effect and improve the coupling efficiency to 97.7%. The laser with groove structure can solve the phenomenon of optical filaments fluctuation effectively and improve the stability coupling efficiency of the beam.