位置:成果数据库 > 期刊 > 期刊详情页
基于关系数据库的模式匹配技术研究
  • 期刊名称:计算机与信息技术
  • 时间:0
  • 页码:71-74
  • 语言:中文
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116
  • 相关基金:国家自然科学基金(No.50674086);中国矿业大学青年科研基金(No.2008A041)
  • 相关项目:煤矿安全监测数据解析整合模型与应用研究
中文摘要:

本文提出了一种无限长时间序列的分段线性拟合(Infinite Time Series—Piecewice Linear Fitting,简称ITS—PLF)算法,该算法根据关键点保持时间段的统计特性,确定选择关键点的区间范围;若极值点的保持时间段不在区间范围,则根据包含极值点的连续三个时间数据之间的夹角与筛选角度之间的关系,判断该极值点成为关键点的可能性.实验表明,ITS—PLF算法的执行不依赖于时间序列长度及领域知识,可以有效识别关键点,并可根据数据压缩率的变化实现自适应拟合.

英文摘要:

In order to resolving the problem of depending on the length of time series and domain knowledge of traditional PLF algorithm, we proposed a Piecewise Linear Fitting algorithm for Infinite Time Series ( ITS_ PLF). To determine the interval of Key Points selecting, the statistical attributes of maintaining time of these Key Points was considered. If the maintaining time of a Extreme Point beyond the selection interval, the relation between the threshold angle and the angle of three consecutive data points containing the Extreme Point was selected to determine whether the Extreme Point was a Key Point or not. The experimental results show that ITS _ PLF algorithm does not depend on the length of time series and domain knowledge, can effectively identify the Key Point and adaptively fit the time series according to the changing of the data compression ratio.

同期刊论文项目
期刊论文 86 会议论文 23 著作 1
同项目期刊论文