位置:成果数据库 > 期刊 > 期刊详情页
Research on the User Interest Modeling of Personalized Search Engine
  • 期刊名称:Wuhan University Journal of Natural Sciences
  • 时间:0
  • 页码:893-896
  • 语言:中文
  • 分类:TP311.5[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国矿业大学计算机科学与技术学院,徐州221116
  • 相关基金:The National Natural Science Foundation of China ( No. 50674086), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060290508), the Science and Technology Fund of China University of Mining and Technology ( No. 2007B016).
  • 相关项目:煤矿安全监测数据解析整合模型与应用研究
中文摘要:

为了解决传统关联规则挖掘中候选集数量过多,计算时间复杂度过高的问题,提出了基于语义相关性的关联规则挖掘方法.该方法采用本体概念之间的语义相关性描述领域中的复杂关系,通过语义相关度过滤掉领域中相关性较小的候选集,以减少关联规则挖掘中候选集的数量.计算语义相关性时,将本体层次关系看作有向无环图而不是层次树,不仅考虑直接层次关系,还考虑非直接层次关系和其他典型语义关系.实验结果表明,该方法能有效减少候选集数量,提高关联规则挖掘的效率.

英文摘要:

An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.

同期刊论文项目
期刊论文 86 会议论文 23 著作 1
同项目期刊论文