位置:成果数据库 > 期刊 > 期刊详情页
正则化超分辨率重建过程的自适应阈值去噪
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]武汉科技大学计算机科学与技术学院,武汉430065, [2]智能信息处理与实时工业系统湖北省重点实验室(武汉科技大学),武汉430065
  • 相关基金:国家自然科学基金资助项目(61572381,61273225).
中文摘要:

为了提高正则化超分辨率技术在噪声环境下的重建能力,对广义总变分(GTV)正则超分辨率重建进行了扩展研究,提出了一种自适应阈值去噪的方法。首先,根据GTV正则超分辨率重建算法进行迭代重建;然后,利用推导出的自适应阈值矩阵,对每次迭代产生的代价矩阵进行阈值划分,小于阈值的对应像素点继续迭代,大于阈值的对应像素点被截断后重新插值并不再参与本轮迭代;最后,程序达到收敛条件时输出重建结果。实验结果表明,通过与单一GTV正则重建和自适应参数的方法相比,自适应阈值去噪的方法提高了收敛速度和重建图像的质量,使正则化超分辨率技术在噪声环境下有更好的重建能力。

英文摘要:

In order to enhance the reconstruction ability of regularized super-resolution technique for noisy image, an adaptive threshold denoising method was proposed based on the extended research of General Total Variation (GTV) regularized super-resolution reconstruction. Firstly, the iterative reconstruction was completed according to GTV regularized super-resolution reconstruction. Then, the deduced adaptive threshold matrix was used to divide GTV cost matrix of each iteration procedure by the threshold. The corresponding pixel points whose costs were less than the threshold continued to be iterated while the points whose costs were greater than the threshold were cut down for re-interpolating and canceled from the iteration of this turn. Finally, the reconstruction result was output when the program met the convergence requirement. The experimental results show that, compared with the single GTV regularized reconstruction method and adaptive parameter method, the proposed adaptive threshold denoising method accelerates the convergence rate and improves the quality of reconstruction image, which makes the regularized super-resolution reconstruction technology perform better for noisy image.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679