设G为有限群,p是|G|的一个素因子,如果存在G的p-幂零子群B,使得Hp∈Sylp(B),且B在群G中Mp-可补,则子群H被称为在群G中Mp-嵌入.利用Mp-嵌入准素子群,研究有限群的FΦ-超中心结构,得到了关于FΦ-超中心嵌入子群的若干刻画.
Let G be a finite group and p a prime divisor of |G| .A subgroup H of G is called Mp-embedded in G if there exists a p-nilpotent subgroup B of G study some the structure of FΦ-hypercentre of finite such that Hp∈Sylp(B) and B is Mp-supplemented in G.We groups with Mp-embedded primary subgroups and obtained characterization about FΦ-hypercentral subgroups.