已知H是群G的子群,若存在G的子群K,使得G=HK且对于H的任意极大子群Hi都有HiK〈G,其中Hi满足|H:Hi|=Pa,则称子群H在G中是Mp-可补的.在群G的Sylow子群的正规化子中,利用某些给定阶子群的Mp-可补性质,结合M-非子群的几乎m嵌入性质,研究有限群的p-幂零性和P-超可解性.
A subgroupHof Gis called Mp-supplemented in Gif there exists a subgroup K of Gsuch that G= HK and HiK 〈Gfor every maximal subgroupHiof H with|H:Hi|=pα.Using the Mp-supplemented properties of some subgroups with fixed order and the nearly m-embedded properties of H-subgroups,some results about p-nilpotency and p-supersolvability of finite groups are obtained.