随着白光LED技术的迅速发展,传统YAG:Ce抖荧光粉由于低显色性、高色温等因素制约而难以满足发展需求。利用近紫外芯片激发三基色荧光粉成为获得白光LED的一种有效途径,因而发展高性能三基色荧光粉具有重要意义,尤其红光发光材料更是当务之急。硅氮基化合物包含由siN4四面体构成的网络结构,具有很高的化学稳定性和热稳定性。该类荧光粉因其结构的多样性,且在紫外一蓝光区具有高的吸收效率,因而随着基质和激活离子的改变,发射光谱可覆盖整个可见光区域,并具有较高的光转换效率和光色稳定性,对温度和驱动电流的变化不敏感等优点,因而此类研究对白光LED的发展具有深远的影响。综述了近年来硅氮基荧光粉制备方法及研究的最新进展,系统地归纳总结了硅氮基荧光粉的晶体结构及发光性能等特性,并分析了目前国际上对该材料的研究动态及应用情况。
With the rapid development of white LED technology, the traditional YAG : Ce3+ phosphor is difficult to meet the re quirement due to the low color rendering and high color temperature. Using ultraviolet chip to stimulate the tri-phosphor has be come an effective way for white LED, and it is urgent to develop novel tri-phosphor with high-performance, especially for red light-emitting materials. Silicon-nitrogen based compounds contain the network structure composed of SiN4 tetrahedron, with higher chemical and thermal stability. Because of their diversity structures, these phosphors have a higher absorption efficiency in UV-blue region, and also, with the change of substrate and active ion, emission spectrum will cover the entire visible region, resulting in a higher light conversion efficiency and light color stability, coupled with the advantages of being not sensitive to the changes in temperature and drive current, etc. These studies will have a far-reaching impact on the development of white LED. In the present paper, we introduce the preparation and latest progress of silicon-nitrogen based phosphor, including the crystal structure, spectroscopic properties and application characteristics.