位置:成果数据库 > 期刊 > 期刊详情页
基于VQ—MAP与LS—SVM融合的说话人识别系统
  • ISSN号:0258-7998
  • 期刊名称:《电子技术应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]桂林电子科技大学信息与通信学院,广西桂林541004
  • 相关基金:国家自然科学基金(No.60961002)
中文摘要:

传统的最小二乘支持向量机(LS—SVM)使用特征向量作为训练样本,在说话人识别系统中应用时区分性不够明显。对此,提出VQ-MAP与LS—SVM融合的方法,使用通用背景模型(UBM)经过VQ—MAP过程得到说话人自适应参数集,把此参数集作为最小二乘支持向量机的训练样本应用于说话人识别系统中。用Matlab进行仿真实验,结果表明,该识别系统SVM训练时间短,且具有较高的识别率。

英文摘要:

Feature vectors used as the training samples of the traditional least square support vector machines does not give e- nough information to discriminate the voice in speaker recognition system. To solve this problem,this paper proposes the method based on VQ-MAP and LS-SVM. Adaptive parameter sets are got through VQ-MAP procedure using universal background model and are used as the training samples of LS-SVM in speaker recognition system. According to the results of simulation using Mat- lab, speaker recognition system based on VQ-MAP and LS-SVM uses less the training time of SVMs and it also has high recognition rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子技术应用》
  • 中国科技核心期刊
  • 主管单位:中国电子信息产业集团有限公司
  • 主办单位:华北计算机系统工程研究所
  • 主编:杨晖
  • 地址:北京市海淀区清华路25号
  • 邮编:100083
  • 邮箱:xinzw@ncse.com.cn
  • 电话:010-66608981 66608982
  • 国际标准刊号:ISSN:0258-7998
  • 国内统一刊号:ISSN:11-2305/TN
  • 邮发代号:2-889
  • 获奖情况:
  • 国家期刊奖,中文核心期刊奖,中国科技期刊奖,电子精品科技期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:20858