<正>This paper presents a 10-bit 80-MS/s successive approximation register(SAR) analog-to-digital converter (ADC) suitable for integration in a system on a chip(SoC).By using the top-plate-sample switching scheme and a split capacitive array structure,the total capacitance is dramatically reduced which leads to low power and high speed.Since the split structure makes the capacitive array highly sensitive to parasitic capacitance,a three-row layout method is applied to the layout design.To overcome the charge leakage in the nanometer process,a special input stage is proposed in the comparator.As 80 MS/s sampling rate for a 10-bit SAR ADC results in around 1 GHz logic control clock,and a tunable clock generator is implemented.The prototype was fabricated in 65 nm 1P9M (one-poly-nine-metal) GP(general purpose) CMOS technology.Measurement results show a peak signal-to-noise and distortion ratio(SINAD) of 48.3 dB and 1.6 mW total power consumption with a figure of merit(FOM) of 94.8 fJ/conversion-step.
This paper presents a 10-bit 80-MS/s successive approximation register(SAR) analog-to-digital converter (ADC) suitable for integration in a system on a chip(SoC).By using the top-plate-sample switching scheme and a split capacitive array structure,the total capacitance is dramatically reduced which leads to low power and high speed.Since the split structure makes the capacitive array highly sensitive to parasitic capacitance,a three-row layout method is applied to the layout design.To overcome the charge leakage in the nanometer process,a special input stage is proposed in the comparator.As 80 MS/s sampling rate for a 10-bit SAR ADC results in around 1 GHz logic control clock,and a tunable clock generator is implemented.The prototype was fabricated in 65 nm 1P9M (one-poly-nine-metal) GP(general purpose) CMOS technology.Measurement results show a peak signal-to-noise and distortion ratio(SINAD) of 48.3 dB and 1.6 mW total power consumption with a figure of merit(FOM) of 94.8 fJ/conversion-step.