对n阶p部图G=G(N1,N2,…,Np)(/Ni/=ni,i=1,2,…,p;n1≤n2≤…≤np),得到其Kirchhoff指标的可达上界,且表明:若2np-n≤1,当其同构于路Pn时达到上界;若2np-n≥2,当其同构于树T^1(n1,n2,…,np-1;np)时达到上界。
In this work, for an n-vertex p-partite graph G=G(N1,N2,…,Np)(/Ni/=ni,i=1,2,…,p;n1≤n2≤…≤np), we obtain the sharp upper bound for its Kirehhoff index : if 2np-n≤1, the upper bound realizes if and only if G is isomorphic to the path Pn, otherwise, the upper bound realizes if and only if G is isomorphic to the tree T^1(n1,n2,…,np-1;np).