位置:成果数据库 > 期刊 > 期刊详情页
基于季节模型及Kalman滤波的道路行程时间
  • ISSN号:1671-8879
  • 期刊名称:《长安大学学报:自然科学版》
  • 时间:0
  • 分类:U491[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]Center for ITS and UAV Applications Research, Shanghai Jiao Tong University, Shanghai 200240, China, [2]School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China, [3]Department of Urban and Regional Planning, University of Florida, PO Box l15706,-Gainesville, FL 32611-5706, USA
  • 相关基金:Sponsored by the National Natural Science Foundation of China (Grant No. 71101109). Acknowledgement This research has received the support from the Bureau of Transportation of Minhang Distract in Shanghai, China. The Bluetooth data collection was supported by Digiwest LLC, Inc., and many special thanks to Mr. Paul White and Mr. John Moon for their field support.
中文摘要:

The accurate prediction of travel time along roadway provides valuable traffic information for travelers and traffic managers. Aiming at short-term travel time forecasting on urban arterials,a prediction model( PSOSVM) combining support vector machine( SVM) and particle swarm optimization( PSO) is developed. Travel time data collected with Bluetooth devices are used to calibrate the proposed model. Field experiments show that the PSO-SVM model ’s error indicators are lower than the single SVM model and the BP neural network( BPNN) model. Particularly,the mean-absolute percentage error( MAPE) of PSO-SVM is only 9. 453 4 %which is less than that of the single SVM model( 12. 230 2 %) and the BPNN model( 15. 314 7 %). The results indicate that the proposed PSO-SVM model is feasible and more effective than other models for shortterm travel time prediction on urban arterials.

英文摘要:

The accurate prediction of travel time along roadway provides valuable traffic information for travelers and traffic managers. Aiming at short-term travel time forecasting on urban arterials, a prediction model ( PSO- SVM) combining support vector machine (SVM) and particle swarm optimization (PSO) is developed. Travel time data collected with Bluetooth devices are used to calibrate the proposed model. Field experiments show that the PSO-SVM model' s error indicators are lower than the single SVM model and the BP neural network (BPNN) model. Particularly, the mean-absolute percentage error ( MAPE ) of PSO-SVM is only 9. 453 4 % which is less than that of the single SVM model ( 12. 230 2 %) and the BPNN model ( 15. 314 7 %). The results indicate that the proposed PSO-SVM model is feasible and more effective than other models for short- term travel time prediction on urban arterials.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《长安大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:长安大学
  • 主编:马建
  • 地址:西安市南二环路中段
  • 邮编:710064
  • 邮箱:
  • 电话:029-82334383
  • 国际标准刊号:ISSN:1671-8879
  • 国内统一刊号:ISSN:61-1393/N
  • 邮发代号:52-137
  • 获奖情况:
  • 交通部一等奖,陕西省一等奖,教育部二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:13589