In this paper,a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems.By constructing a suitable response system,an integral order synchronization error system is obtained.Based on the theory of Lyapunov stability and the impulsive differential equations,some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system.In particular,some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains.Compared with the existing results,the main results in this paper are practical and rigorous.Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.