隐马尔可夫树(Hidden Markov tree,HMT)模型作为一种小波变换系数的统计模型,可以表示小波系数的统计相关性及非高斯性。由于离散小波变换(Discrete wavelet transform,DWT)不具有平移不变性,应用基于DWT的HMT模型进行机械状态诊断时容易出现误诊。为了获得平移不变性,提出一种基于二分树复小波变换(Dual-tree complex wavelet transform,DTCWT)的HMT模型。实例表明与使用基于DWT的HMT模型进行状态识别相比,使用基于DTCWT的HMT模型的状态识别率有显著提高。
As a statistical model of wavelet coefficients, hidden Markov tree (HMT) can consider the statistical dependencies and non-Gaussian statistics of wavelet coefficients. Due to shift-variance of discrete wavelet transform (DWT), if DWT-based HMT model is used for machine condition diagnosis, it is likely to get incorrect results. To obtain shift-invariance, DT CWT-based (dual-tree complex wavelet transform) HMT model is developed, Experiments show that DT CWT-based HMT model can get much higher recognition rates in comparison with DWT-based HMT model.