位置:成果数据库 > 期刊 > 期刊详情页
基于区间型符号数据的群组推荐算法研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]天津大学管理与经济学部,天津300072
  • 相关基金:国家自然科学基金资助项目(70701026,71271147)
中文摘要:

传统群组推荐算法基于点数据描述群组用户模型,存在着信息缺失、很难统筹考虑所有个体用户的需求等问题。针对该问题,对个体评分数据按照符号数据分析的思想进行"打包",将群组成员的评分信息汇总为区间型符号数据。在Hausdorff距离基础上,采用区间内部点数据的描述统计量,提出了一种全新的区间数距离度量方法,并利用这种距离对区间型符号数据描述的群组实施K-均值聚类,由此确定相似群组,最后通过最近邻的评分预测目标群组的评分。将这种全新的群组推荐算法与传统方法进行推荐精度与效率的对比实验,结果表明,在各种实验条件下,基于区间型符号数据的群组推荐算法均优于传统点数据的群组推荐算法。

英文摘要:

The group user profile in traditional group recommendation is described by single-valued data.This results in the loss of data information and being difficult to meet the demands of all the memebers of the group.Aimed at this problem,this paper took the method of symbolic data analysis aggregating individual ratings of the group into interval symbolic data into account.It proposed a novel distance considering the descriptive statistics of individuals within the intervals.Based on the K-means clustering on the interval data of group ratings,it obtained the similar groups.Then it predicted the ratings of the target group by using the neighbors' ratings.It conducted a simulation study to evaluate the new method.The result shows that the new method based on interval symbolic data analysis is more accurate and efficient than the traditional item-based collaborative filtering algorithms for group recommendation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049