位置:成果数据库 > 期刊 > 期刊详情页
基于微博行为数据的不活跃用户探测
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]武汉大学计算机学院,武汉430072, [2]中南民族大学计算机科学学院,武汉430074, [3]空军预警学院计算机教研室,武汉430000
  • 相关基金:国家自然科学基金(61272109);中央高校基本科研业务费专项资金(CZYl5006)
中文摘要:

随着微博注册用户的增长,探测不活跃账号,自动判定用户活跃度有重要的商业价值。该文提出了一种自动检测算法并通过实验验证。算法核心是提出的影响用户活跃度的4个判定因子,可由用户行为计算得到。算法包含用户活跃度概率层次模型(ADPHM)和用户评分模型(USM)。ADPHM模型计算用户是不活跃用户的概率;USM模型计算用户活跃度得分。实验数据集包含了新浪微博2316281个用户信息和141322019条微博内容。实验结果表明,该算法能在线性时间复杂度下自动检测出不活跃账号,完善用户可信度评估体系。

英文摘要:

With the growth of registered users in microblog, how to detect inactive accounts and automatically judge the user activity have an important commercial value. To meet this need, an automatic detection algorithm is proposed and experimentally tested. The kernel of automatic detection algorithm is four determining factors of inactive users we defined, which can be calculated by user’s behavior. The algorithm contains User Active Degree Probability Hierarchical Model (ADPHM) and User Scoring Model (USM). The ADPHM is employed to estimate the probability of inactive user;the USM is used to give a user's activity score. Experiment data contains 2 316 281 users’ information and their 141 322 019 tweets crawled from Sina-Weibo. Experimental results show that this method can detect inactive users automatically and improve user confidence evaluation system in linear time complexity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314