位置:成果数据库 > 期刊 > 期刊详情页
传感器网络中一种基于多元回归模型的缺失值估计算法
  • ISSN号:1000-1239
  • 期刊名称:计算机研究与发展
  • 时间:0
  • 页码:2101-2110
  • 语言:中文
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
  • 相关基金:国家“九七三”重点基础研究发展计划基金项目(2006CB303000);国家自然科学基金重点项目(60533110);国家自然科学基金项目(60703012,60773063);NSFG RGC of China基金项目(60831160525).
  • 相关项目:传感器网络系统基础软件及数据管理关键技术研究
中文摘要:

在无线传感器网络中,感知数据的缺失问题不可避免,并且给无线传感器网络的各种应用带来了巨大困难。解决该问题的最好办法是对缺失数据进行准确估计。提出了一种基于多元回归模型的缺失值估计算法。该算法首先依感知数据的时间相关性和空间相关性分别采用多元线性回归模型对缺失数据进行估计,然后根据回归模型的拟合优度对基于时间维和空间维求出的两个估计值分别赋予相应的权值系数,并将其加权平均值作为缺失数据的最后估计值。由于该算法在对缺失值进行估计时,同时考察多个邻居节点并联合地用其感知数据来共同估计缺失值,因此该算法具有可靠、稳定的估计性能。在两个真实的数据集合上对该算法进行了测试,实验结果表明提出的缺失值估计算法能够有效估计无线传感器网络中的缺失数据。

英文摘要:

In wireless sensor network, the missing of sensor data is inevitable due to the inherent characteristic of wireless sensor network, and it causes many difficulties in various applications. To solve the problem, the best way is to estimate the missing data as accurately as possible. In this paper, a multiple-regression-model-based missing values imputation algorithm is proposed. It first adopts the multiple linear regression model to estimate the missing data both on temporal dimension and spatial dimension. Then, it assigns the weight coefficients to the two estimated values computed respectively on temporal dimension and spatial dimension according to the goodness-of-fit, and then uses the weighted average of the two values as the final estimated value. Since the algorithm estimates the missing data with the data of multiple neighbor nodes jointly rather than independently, its estimation performance is more stable and reliable. Experimental results on two real-world datasets show that the proposed algorithm can estimate the missing data accurately.

同期刊论文项目
期刊论文 44 会议论文 7
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349