设R是nil-semicommutative的exchange环,证明了如下结论:1)对于R的每个左本原理想P,R/P是除环;2)R是左quasi-duo环;3)若每个非零左R-模有一个极大子模,则R/J(R)是强正则环;4)R/J(R)是强正则环当且仅当R/J(R)是同态半本原环;5)若R的每个素理想是左本原理想,则R为强π-正则环且R/J(R)是强正则环.
Let Rbe an exchange nil-semicommutative ring.Then 1)R/Pis a division ring for each left primitive ideal Pof R;2)Ris a left quasi-duo ring;3)If every nonzero left R-module has a maximal submodule,then R/J(R)is strongly regular;4)R/J(R)is a strongly regular ring if and only if R/J(R)is a homomorphic semiprimitive ring;5)If every prime ideal of Ris left primitive,then Ris a stronglyπ-regular ring if and only if R/J(R)is a strongly regular ring.