设R是一个有单位元的结合环,I是R的补右零化子集,且n为正整数,若对任意x∈R/I,y∈R,有(xy)(n+k)=x(n+k)y(n+k),k=0,1,2,则R是交换环.
Let Rbe an associative ring with identity.I be a complementary right annihilator of R.It is shown that if for any x∈R/I,y∈R,(xy)~(n+k)=x~(n+k)y~(n+k),k=0,1,2,where nis a fixed positive integer,then Ris a commutative ring.