讨论了全空间上一类带 Hardy-Sobolev临界指数的拟线性椭圆方程 -Δpu -μ| u| p-2 u| x | p =λ| u| p*(t)-2| x | t u+ f(x ,u),x ∈ RN u ∈ D1, p0(RN ) 其中:D1, p0(RN )是 C0∞(RN )的闭包,Δp u =-div (|▽ u| p-2▽ u),2< p < N ,0≤μ<-μ=( N - p )pp p ,λ>0,0≤ t < p ,p < q < p*(t),p*(t)= p(N - t)(N - p)是Hardy-Sobolev临界指数。利用一个新的环绕定理,证明了该方程变号解的存在性。
In this paper ,we've studied a class of quasilinear elliptic equation involving Hardy-Sobolev expo-nents - Δp u - μ| u| p-2 u| x | p = λ| u| p* (t)-2| x | t u+ f (x ,u) ,x ∈ RN u ∈ D1 , p0 (RN ) 〈br〉 Where D1,p0 (RN)is C0∞ (RN)closure ,Δpu= -div(|▽ u|p-2 ▽ u) ,2〈 p〈 N ,0≤ μ〈-μ= (N-p)ppp ,λ〉0 ,0≤ t〈 p ,p〈 q〈 p* (t) ,p* (t)= p(N-t)(N-p) is called Hardy-Sobolev critical parameter .By means of a new linking theorem ,the existence of sign-changing solutions has been proved .