位置:成果数据库 > 期刊 > 期刊详情页
基于LM-BP神经网络的非线性轮廓图优化方法研究
  • ISSN号:1004-132X
  • 期刊名称:《中国机械工程》
  • 时间:0
  • 分类:F406.3[经济管理—产业经济]
  • 作者机构:天津大学,天津300072
  • 相关基金:国家杰出青年科学基金资助项目(71225006)
中文摘要:

将正交试验设计理论与BP神经网络模型和Levenberg-Marquard算法相结合,提出了一种基于LM-BP神经网络模型的针对输出为非线性轮廓图响应的离线设计优化方法。并结合实例与传统的统计回归建模方法得出的优化结果进行了比较。结果表明基于LM-BP神经网络建模可以避免由于实验误差和试验设计方案所造成的模型系数估计误差,而与标准的BP算法比较,克服了标准BP算法性能不稳定、收敛速度慢、收敛精度低、存在局部最小值等缺点,具有极高的精确性,优化结果令人满意。

英文摘要:

A method to optimize the non-linear profile was presented based on the DOE theory BP neural network model with Levenberg-Marquard algorithm,which were compared with the traditional statistical regression modeling by a example.The results show that the estimation errors of the model coefficients due to the design and experimental errors may be avoided based on LM-BP neural network modeling.Compared with the BP algorithm this method overcomes the standard BP algorithm performance of unstability,slow convergence and low convergence precision,the presence of local minima and other short-comings.The method proposed herein has a high accuracy,optimization results are satisfactory

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788