Estimation of the influence of snow grain size and black carbon on albedo is essential in obtaining the accurate albedo. In this paper, field measurement data, including snow grain size, snow depth and density was obtained. Black carbon samples were collected from the snow surface. A simultaneous observation using Analytical Spectral Devices was employed in the Qiyi Glacier located in the Qilian Mountain. Analytical Spectral Devices spectrum data were used to analyze spectral reflectance of snow for different grain size and black carbon content. The measurements were compared with the results obtained from the Snow, Ice, and Aerosol Radiation model, and the simulation was found to correlate well with the observed data. However, the simulated albedo was near to 0.98 times of the measured albedo, so the other factors were assumed to be constant using the corrected Snow, Ice, and Aerosol Radiation model to estimate the influence of measured snow grain size and black carbon on albedo. Field measurements were controlled to fit the relationship between the snow grain size and black carbon in order to estimate the influence of these factors on the snow albedo.
Estimation of the influence of snow grain size and black carbon on albedo is essential in obtaining the accurate albedo. In this paper, field measurement data, including snow grain size, snow depth and density was obtained. Black carbon samples were collected from the snow surface. A simultaneous observation using Analytical Spectral Devices was employed in the Qiyi Glacier located in the Qilian Mountain. Analytical Spectral Devices spectrum data were used to analyze spectral re- flectance of snow for different grain size and black carbon content. The measurements were compared with the results obtained from the Snow, Ice, and Aerosol Radiation model, and the simulation was found to correlate well with the ob- served data. However, the simulated albedo was near to 0.98 times of the measured albedo, so the other factors were as- sumed to be constant using the corrected Snow, Ice, and Aerosol Radiation model to estimate the influence of measured snow grain size and black carbon on albedo. Field measurements were controlled to fit the relationship between the snow grain size and black carbon in order to estimate the influence of these factors on the snow albedo.