位置:成果数据库 > 期刊 > 期刊详情页
基于相空间重构和支持向量机的电能扰动分类方法
  • 期刊名称:电力系统自动化,2007,31(5): 70-75
  • 时间:0
  • 分类:TM93[电气工程—电力电子与电力传动] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]浙江大学电气工程学院,浙江省杭州市310027, [2]上海市电力公司市东供电公司,上海市200122
  • 相关基金:国家自然科学基金重点资助项目(50437010).
  • 相关项目:微型燃气轮机-高速发电机分布式发电与能量转换系统研究
中文摘要:

电能扰动的分类需要信号特性提取和分类器构造2个阶段,文中采用相空间重构和支持向量机的组合,提出了一种全新的电能扰动信号的分类方法。首先利用相空间重构方法构造扰动信号轨迹,通过编码获得二进制轨迹图像。针对该图像定义了4类具有区别性的指标,以表征不同扰动类型的特性。然后将特性指标作为支持向量机分类器的输入矢量,实现自动分类识别。算例表明该方法计算量少,正确率高,所需训练样本少,可以有效分类识别电压暂降、电压瞬升、电压中断、脉冲振荡、谐波、闪变等6种电能扰动。

英文摘要:

Disturbance classification algorithms are always composed by two sequential processes: the signal feature extraction and the classifier design. A novel disturbance classification algorithm consisting of phase space reconstruction (PSR) and support vector machines (SVM) is presented. At first PSR is applied to construct disturbance signal trajectories converted into binary images by encoding in the next stage. For these binary images, four distinctive indices are proposed to represent discriminative features of different disturbance patterns. Then the obtained features are utilized as inputs into the SVM classifier to realize the automatic classification of power disturbances. Numerical results show that with the merits of less calculation burden, high accuracy and less demand of training samples, the method proposed can effectively classify six disturbance patterns including voltage sags, voltage swells, voltage interruptions, impulsive transients, harmonics and flickers.

同期刊论文项目
期刊论文 101 会议论文 51 获奖 6 著作 1
同项目期刊论文