位置:成果数据库 > 期刊 > 期刊详情页
基于SVR的电能质量数据压缩算法
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TM933[电气工程—电力电子与电力传动] TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]浙江大学电气工程学院,浙江杭州310027, [2]杭州市电力局,浙江杭州310009, [3]西门子中国研究院,上海200120
  • 相关基金:国家自然科学基金重点资助项目(项目批准号:50437010)
中文摘要:

针对电力系统日益突出的海量数据流量的传输和存储问题,提出二维小波与支持向量回归结合算法用于电能质量数据压缩.利用小波变换把二维电能质量图像分解到不同尺度的子空间,对得到的不同方向的小波系数采用不同的数据组织方式.高频子空间系数采用可控制压缩比的ν支持向量回归(ν-SVR)学习系数间的相关性,用稀疏的支持向量表示原始数据,可以达到去冗余和数据压缩的效果.仿真实验利用不同的电能质量事件测试样本,对本文算法与传统支持向量机以及小波阈值法的压缩性能进行测试,结果表明,本文算法的压缩性能相比有了一定的进步.

英文摘要:

Data storage and communication currently pose a major problem for power quality and power systems monitoring,a method using 2-d wavelet and support vector machine for power quality event data compression was presented.First,2-d representation power quality data was decomposed into wavelet frequency subspaces.High frequency subspaces were compressed by ν-SVR,the coefficients' correlation in wavelet domain was analyzed and represented by sparse support vectors,therefore the original data.could be compressed based on this feature.Experimental results showed that the compression performance of the algorithm achieve much improvement when compared to traditional support vector machine and wavelet algorithm.

同期刊论文项目
期刊论文 101 会议论文 51 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198