对Klein~Gordon—Zakharov方程的一类初边值问题提出了一个含参数0的守恒型差分格式,并且在先验估计的基础上,利用能量方法证明了差分解的收敛性且收敛阶为O(h^2+τ^2).数值实验结果表明此格式是精确有效的.
In this work, a conservative difference scheme with a parameter θ is presented for the initial-boundary value problem of the Klein-Gordon-Zakharov equations. On the basis of a priori estimates, convergence of the difference solutions is proved with order O(h^2 + τ^2) in the energy norm. Numerical experiments demonstrate the accuracy and effectiveness of the proposed scheme.