对一类带波动算子的非线性Schrodinger方程进行了数值分析,提出了一个含参数的二阶守恒差分格式,根据参数选取的差异,该格式既可隐式计算也可显式计算。对初值条件进行了中心差分离散,使其具有二阶精度,从而与守恒格式的精度一致。利用矩阵理论证明了差分解的存在惟一性,并利用一个重要的不等式在先验估计的基础上,运用能量估计的方法证明了该格式按无穷范数以二阶精度收敛到真实解。数值实验表明该格式具有较高的计算效率。
A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme.