设A是一个域k上的基本有限维代数.本文证明了如果AT是一个n-BB-倾斜模,那么TB亦为n-BB-倾斜模,其中B=End(AT).进一步,如果AT是一个n-APR-倾斜模,那么TB亦为n-APR-倾斜模.最后,把本文的结果应用到一个具有n-APR-倾斜模AT的代数A上,得到A是n-表示-有限的(无限的)当且仅当B是n-表示-有限的(无限的).
Let A be a basic finite dimensional Mgebra over some field k. In this paper, we prove that if AT is an n-BB-tilting module, then TB is also an n-BB-tilting module, where B=End(AT). Furthermore, if AT is an n-APR-tilting module, then TB is also an n-APR-tilting module. Finally, applying our results to an algebra A which admits an n-APR-tilting module AT, we obtain that A is n-representation-finite (infinite) if and only if B is n-representation- finite (infinite).