基于线性理论的液体射流稳定性研究通常有两种方法:时间模式和空间模式;为了研究液体射流时间模式与空间模式稳定性的关系,基于线性稳定性分析方法,给出了超空化条件下液体射流稳定性色散方程以及对应于时间模式和空间模式的色散方程求解过程;在此基础上,对超空化条件下的液体射流时间模式稳定性与空间模式稳定性进行了对比研究,并对时间模式稳定性与空间模式稳定性差异的影响因素进行了分析。研究结果表明,对于一个给定参数下的射流而言,在研究扰动波在射流表面的主控模式、射流的最不稳定频率以及射流的破碎尺度时,空间模式稳定性研究结果与时间模式稳定性研究结果具有一定的等价性;而在研究射流的扰动振幅时,空间模式稳定性研究结果大于时间模式稳定性研究结果;液体射流周围气体的旋转和可压缩性以及射流的超空化都会对空间模式最大扰动增长率与时间模式最大扰动增长率间的差异产生影响。
There are two types of linear stability theories which are commonly used to predict the stability of liquid jets. In order to investigate the relationship between temporal and spatial mode stability, a dispersion equation describing the liquid jet stability under supercavitation and a solving process corresponding to temporal mode and spatial mode were presented based on the linear stability analysis method. Comparative study on the temporal mode and spatial mode stability was carried out and affecting parameters were analyzed. The results show that the temporal mode and spatial mode for jet surface, dominant frequency and breakup scale are comparable, while the results of spatial mode are higher than that of temporal mode for the maximum disturbance amplitude. In addition, the swirling intensity and the compressibility of surrounding gas together with the supercavitation of liquid jet affect the maximum disturbance growth rate between temporal mode and spatial mode.