针对具扩散和时滞的SI—SIR传染病模型,用特征分析和Lyapunov泛函方法研究了相应的具齐次Neumann边界条件反应扩散方程组解的渐近性质.最后给出数值模拟来说明如果染病鸟类的接触率和染病人类的接触率小,那么全系统的无病平衡点是全局渐近稳定的;但当染病鸟类的接触率大或者和染病人类的接触率大时,变异的禽流感将在人类中扩散.
A SI-SIR epidemic model with diffusion and delay is investigated. The asymptotic behavior of the corresponding reaction-diffusion equations with homogeneous Neumann boundary conditions is given using spectral analysis and of constructing the Lyapunov function. Numerical simulations are given to that the disease-free equilibrium is globally asymptotically stable if the contact rate for the susceptible birds and the contact rate for the susceptible humans are small. But if the contact rate for the susceptible birds or the contact rate for the susceptible humans are big, mutant avian influenza spreads in the human world.