考虑具扩散的传染病模型,该模型描述了禽流感在鸟类和人类中的传播,研究相应的具齐次Neumann边界条件反应扩散方程组解的渐近性质。结果表明如果染病鸟类的接触率和染病人类的接触率小的话,全系统的无病平衡点是渐近稳定的;但当染病鸟类的接触率大或者和染病人类的接触率大时,变异的禽流感将在人类中扩散。
This paper is concerned with an epidemic model with diffusion describing the transmission of avian influenza among birds and humans, and considered the asymptotic behavior of the corresponding reaction-diffusion equations with homogeneous Neumann boundary conditions. The result shows that the disease--free equilibrium is locally asymptotically stable if the contact rate for the susceptible birds and the contact rate for the susceptible humans are small. But if the contact rate for the susceptible birds or for the susceptible humans is big, mutant avian influenza spreads in the human world.