The structure and photoluminescence (PL) properties of Sr3SiO5 : Sm3+ and Li+-doped Sr3SiO5 : Sm3+ red-emitting phosphors were investigated. Samples were prepared by the high-temperature solid-state method. PL spectra show that the concentration quenching occurs when the Sm3+ concentration is beyond 1.3 mol% in Sr3SiO5 : Sm3+ phosphor without doping Li+ ions. The concentration-quenching mechanism can be explained by the electric dipole-dipole interaction of Sm3+ ions. The incorporation of Li+ ions into Sr3SiO5 : Sm3+ phosphors, as a charge compensator, improves the PL properties. The lithium ions also suppress the concentration quenching in Sm3+ with concentration increased from 1.3 mol% to 1.7 mol%.
The structure and photoluminescence (PL) properties of Sr3 SiO5: Sm3+ and Li+-doped Sr3SiOs: Sm3+ red-emitting phosphors were investigated. Samples were prepared by the high-temperature solid-state method. PL spectra show that the concentration quenching occurs when the Sm3+ concentration is beyond 1.3 mol% in Sr3SiOs: Sm3+ phosphor without doping Li+ ions. The concentration-quenching mechanism can be explained by the electric dipole-dipole interaction of Sm3+ ions. The incorporation of Li+ ions into Sr3SiOs: Sm3+ phosphors, as a charge compensator, improves the PL properties. The lithium ions also suppress the concentration quenching in Sm3+ with concentration increased from 1.3 tool% to 1.7 tool%.