In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method (LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time. The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.
In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method (LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time. The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.