针对一类李普希兹混沌系统,研究其基于采样控制的容错同步问题.利用输入时滞方法,将采样误差系统转换为连续时间时滞系统;基于Lyapunov泛函方法,给出了同步误差系统的时滞依赖稳定性判据;在此基础上,利用线性矩阵不等式技巧设计了容错控制器;最后,用蔡氏电路举例说明了该方法的有效性.
This paper deals with fault-tolerant synchronization for a class of Lipschitz chaotic systems using sampled-data control.By applying an input-delay approach,we transform the sampling system into a continuous time-delay system.On the basis of a Lyapunov functional approach,some delay-dependent stability criteria of the synchronization error system are derived.A fault-tolerant controller design procedure is then proposed in terms of linear matrix inequalities.Finally,a Chua′s circuit is used to illustrate the effectiveness of the proposed technique.