位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯模型加权平均法的径流序列高频分量预测研究
  • ISSN号:1003-1243
  • 期刊名称:《水力发电学报》
  • 时间:0
  • 分类:P338.2[天文地球—水文科学;水利工程—水文学及水资源;天文地球—地球物理学]
  • 作者机构:[1]长安大学环境科学与工程学院,西安710054, [2]长安大学旱区地下水文与生态效应教育部重点实验室,西安710054, [3]陕西省江河水库管理局,西安710018
  • 相关基金:国家自然科学基金(51379014); 陕西省科学技术研究发展计划项目(2014KJXX-54); 中央高校基本科研业务费专项资金(310829152018)
中文摘要:

"分解–预测–重构"模式作为一种新的预测思路,已被广泛用于非平稳径流序列的中长期预测。但由于分解之后高频分量预测精度较差,致使该模式的预测效果并不理想。本文采用径向基神经网络(RBF)、自回归模型(AR)以及均生函数模型(MGF)分别对陕北无定河丁家沟站实测径流由经验模态分解(EMD)得到的高频分量进行预测,利用贝叶斯模型加权平均法(BMA)对其集成,着重分析比较了基于BMA的集成方法和单一模型的预测效果,验证了BMA方法在处理高频分量误差控制方面的可行性。结果显示基于BMA的高频分量预测的相对误差绝对平均值较单一模型有所降低,径流预测整体精度有显著提升。这表明BMA集成方法能够有效地降低径流序列中高频分量的预测误差,提高整体预测精度,可作为一种有效的方法,供其他类似非平稳预测问题所借鉴。

英文摘要:

River streamflow has gradually developed into a non-stationary and non-linear complex process under the influences of climate change and human interferences. A major technical issue associated with this environmental changing is how to predict accurately the future change in river runoff. At present, a new prediction system, namely decomposition-prediction-reconstruction, has been widely used in the mid-and long-term prediction of runoff series. Its prediction efficiency, however, is unsatisfactory due to large errors in its prediction of high-frequency components that are decomposed using the empirical mode decomposition(EMD). To forecast the high-frequency components in the runoff at the Dingjiagou gauge station on the Wuding River, this study has adopted three approaches: the radial basis function(RBF) neural network, autoregressive(AR) model, and mean generating function(MGF) model. Based on these models, a comprehensive prediction was also made using the Bayesian model averaging(BMA) method. In this paper, we confirm the accuracy of BMA and demonstrate its effective control on the prediction error of high-frequency components through a comparison of its errors with those of the three single models. Thus, this study comes to a conclusion that the BMA method is an effective approach to improve the prediction accuracy of runoff series and would provide valuable references for similar issues in forecasting non-stationary time series.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《水力发电学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国水力发电工程学会
  • 主编:李庆斌
  • 地址:北京清华大学新水利馆211室
  • 邮编:100084
  • 邮箱:
  • 电话:010-62783813
  • 国际标准刊号:ISSN:1003-1243
  • 国内统一刊号:ISSN:11-2241/TV
  • 邮发代号:
  • 获奖情况:
  • 优秀学术期刊三等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12057