位置:成果数据库 > 期刊 > 期刊详情页
基于TFPW—DT—ICSS法的渭河水文序列方差变异识别与诊断
  • ISSN号:1002-5634
  • 期刊名称:《华北水利水电大学学报:自然科学版》
  • 时间:0
  • 分类:TV123[水利工程—水文学及水资源] P333.6[天文地球—水文科学;水利工程—水文学及水资源;天文地球—地球物理学]
  • 作者机构:[1]长安大学环境科学与工程学院,陕西西安710054, [2]长安大学旱区地下水文与生态效应教育部重点实验室,陕西西安710054
  • 相关基金:国家自然科学基金项目(51379014);陕西省科学技术研究发展计划项目(2014KJXX-54);中央高校基本科研业务费专项资金(310829152018).
中文摘要:

水文变异现象已造成许多地区的水文数据受到“污染”,使得传统水文频率计算举步维艰。同时,水文变异识别方法的异法异解、隐藏效应、自相关性影响、变异信息交叉等问题也困扰着水文变异理论的发展。亟待解决。针对水文变异识别中的序列自相关性影响,提出将去趋势、预置白与ICSS检验法相结合,构建TF-PW—DT—ICSS法,对渭河咸阳水文站的径流数据进行方差变异的多点识别,同时应用水文频率计算方法验证变异点的准确性。结果表明:TFPw—DT—ICSS法通过TFPW处理,可缓解序列自相关性对结果的影响;ICSS算法在方差变异检验上可获得较为准确的识别结果,适用于水文序列的方差变异诊断;ICSS算法对数据长度变化的响应不敏感,可实现多序列上的有效识别。研究成果可为变化环境下的水文计算与设计提供数据支持和技术支撑。

英文摘要:

Hydrological variation occurring in many areas has caused the " contamination" of hydrological data and made the calculations of traditional hydrological frequency in a difficult position. Although some approaches have been put forward for hydrological variation detection, but many problems such as different solution from various ways, masking effect, autocorrelation impact, information confusion still hold back the development of modern hydrologic analysis theory, and the problems must be resolved. In the paper, for solving the problems caused by autocorrelation impact in the series during recognizing hydrological variation, combined the algorithms of Detrend (DT) , Trend-Free Pre-Whitening (TFPW) and Iterated Cumulative Sums of Squares (ICSS) , TFPW-DT-ICSS algorithm was constructed to detect the change points in the variance of annual runoff data at Xianyang hydrological station in the Weihe River basin, in TFPW-DT-ICSS algorithm, Iterated Cumulative Sums of Squares algorithm was employed to eliminate the influence of autocorrelation in the series, Trend-Free Pre-Whitening algorithm and Detrend algorithm were used to remove autocorrelation impact and trend components. Moreover, hydrological frequency calculation method was applied to verify the accuracy of the location of change points in the variation. The results show that in TFPW-DT-ICSS algorithm, Trend-Free Pre-Whitening algorithm can relieve the autocorrelation impact in the series, and Iterated Cumulative Sums of Squares algorithm can exactly recognize the change points in the variance in the series. Besides, it is found that the Iterated Cumulative Sums of Squares algorithm is insensitive to the change of the data length, and can do effective recognition almost without length limitation. The resuhs in the paper can provide data and technical support for hydrological computing and design in changing environment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华北水利水电大学学报:自然科学版》
  • 主管单位:河南省教育厅
  • 主办单位:华北水利水电大学
  • 主编:李凌杰
  • 地址:郑州市北环路36号
  • 邮编:450045
  • 邮箱:hbsyxb@ncwu.edu.cn
  • 电话:0371-69127216
  • 国际标准刊号:ISSN:1002-5634
  • 国内统一刊号:ISSN:41-1432/TV
  • 邮发代号:
  • 获奖情况:
  • 河南省优秀科技期刊
  • 国内外数据库收录:
  • 被引量:311